#### Order Parameters for Visual Inference



Alan Yuille
UCLA
Dept. Statistics and Psychology.

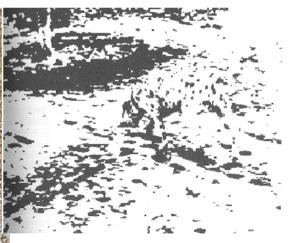


#### How hard are visual tasks?

Easy, Medium, and Hard target detection.









- What are the factors that determine how hard a task is?
- When can tasks be solved?
  How fast can we solve them?
- What approximations can we make and still solve them?



#### Bayes Risk and Performance

- Bayes Risk. I.
- I is the input data and W is the representation we seek to compute.
- Seek a decision rule W=d(I).
- d(I) can be a analytic function, the solution of a PDE, filter response...



#### Bayes Risk and Performance

- Bayes Risk. II.
- Need an error criterion L(W,d(I)) the loss of making decision d(I) when the true solution is W.
- Need a dataset of problem examples,
   Ensemble of problem instances
   P(W,I).

## Bayes Risk and Performance

#### Bayes Risk. III.

Risk: 
$$R(d) = \sum_{I,W} L(W, d(I)) P(W, I)$$
.

Bayes Risk =  $\min_d R(d)$ .

If we restrict the class of decision rules to  $\Omega$ , then performance degrades to  $\min_{d \in \Omega} R(d)$ .



### **Bayesian Decision Theory**

- Most existing work on performance analysis of visual algorithms is, implicitly, or explicitly, formulated in these terms.
- Frequentist bounds, ROC curves,
   Cramer-Rao, Hilbert-Schmidt, etc.
- But there are limited analytic studies for realistic vision problems.



- Use Bayesian Decision Theory to obtain analytic performance bounds for road detection.
- Performance will be determined by order parameters.
- Phase transitions in performance at critical values of order parameters.

#### **Road Detection**

- Road Detection from Aerial Images. (Geman '96)
- Task: find and track the road.
- Performance and
   Complexity analysis (Yuille,
   Coughlan), (Yuille, Coughlan,
   Wu, Zhu).



#### Geman and Jedynak Model.

A path is a sequence of moves {t\_i} on a Q-nary tree. This determines a path in the image {x\_i}:

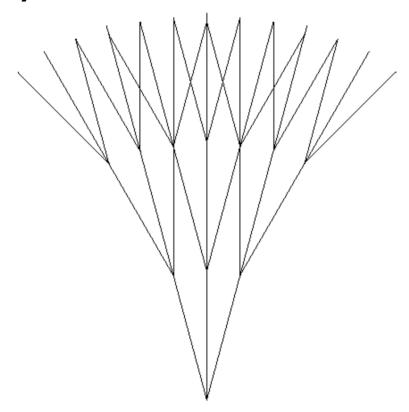
$$x_{i+1} = x_{i} + w(x_{i}-x_{i-1}) + x_{i}$$

• where w(.) is an arc of fixed length and depends on the angle of t\_(i) relative to Previous segment x\_(i)-x\_(i-1).



### Geman and Jedynak Tree

3-nary tree.



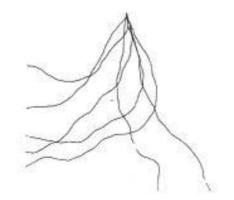
## Geman and Jedynak Model

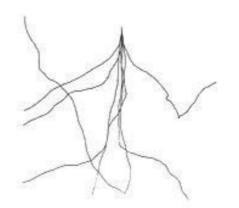
- Geometric prior on path expressed by
   P({t\_(i)}) = P\_g(t\_(1)) P\_g(t\_(n))
   (can generalize to first order Markov).
- Likelihood function: filter response is drawn from P(y\_(i)|on) or P(y\_(i)|off) if filter is evaluated on or off the road.

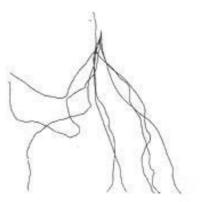
#### Geometric Prior.

Example of a geometric prior.

Samples of curves with elastica model (Mumford 1995).



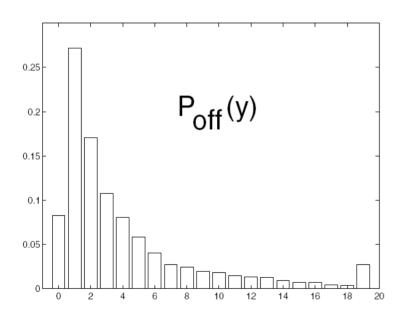


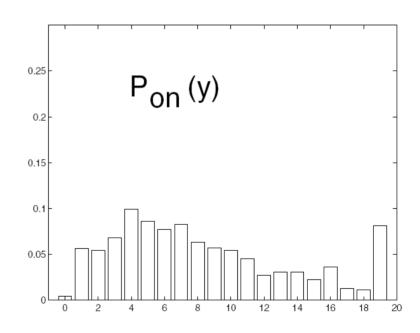




#### Likelihood Function

P-on and P-off (empirical).





## Geman and Jedynak Model

• MAP estimation corresponds to finding the path that maximizes the reward function:

$$r(\{t_i\}, \{y_i\}) = \frac{1}{N} \sum_{i=1}^{N} \log \frac{P_{on}(y_i)}{P_{off}(y_i)}$$

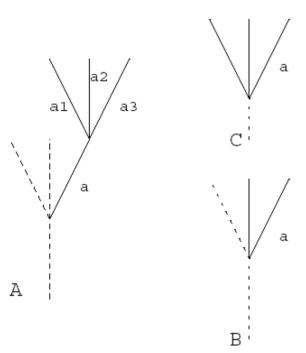
$$+\frac{1}{N}\sum_{i=1}^{N}\log\frac{P_g(t_i)}{U(t_i)},$$

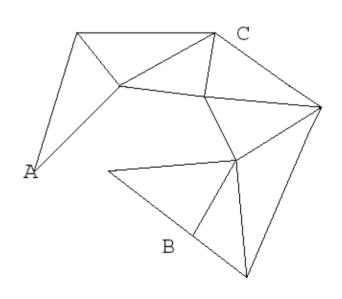
U(.) is uniform distribution.



#### A\* Search to get MAP

Tree Search (Left). A\* heuristic.







#### **Model Performance**

- Geman and Jedynak report good performance with convergence linear in length N of road.
- But, others report (privately) poor results using this algorithm.

## Theoretical Analysis

- Problem formulation defines an ensemble of problem instances.
- P({t\_(i)},{y\_(i)}) determined by the geometric prior P({t\_(i)}) and the likelihood function P({y\_(i)}|{t\_(i)}).
- Likelihood function is factorized in terms of P\_on and P\_off.

## 4

#### Distribution for rewards.

- Calculate the probability distribution for the reward on the road path, with respect to ensemble P({t\_(i)},{y\_(i)}).
- Calculate the distribution for the reward for the Q^N-1 off road paths.
- These calculations are possible because of shift-invariance (self-averaging).

## Analysis using Sanov's Thm.

Theorem (Phase Transition).

**Let** K=D(P\_on||P\_off) + D(P\_g||U) - **log** Q. Then:

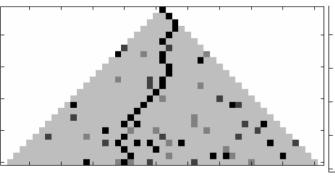
- (I) Bayes risk tends to 0 as N tends to infinity if, and only if, K > 0.
- (II) Bayes risk tends to 1 as N tends to infinity if K<0.

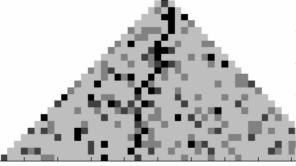
D(.//.) is Kullback-Leibler divergence.

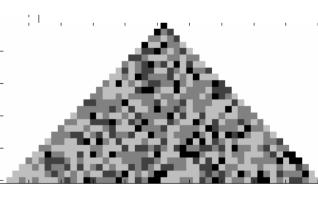


## Examples:

- Order Parameter K:
- $\bullet$  K=0.8647, K =0.2105, K =-0.7272.







# -

#### Bounds from Sanov's Thm.

- Properties of interest error rates are bounded by terms such as
   e^ (-N K) for large N.
- Sanov's Theorem see Cover and Thomas (1991) applies to i.i.d. samples (requires distributions to be factorized).

#### Convergence Rate.

Similar analysis shows:

Expected Complexity is O(N),
 if K > T >0, (T is a small constant).

Coefficient of N is bounded by simple function of K.

Worst case is exponential in N. But typical performance is far better.

#### **Ensemble Analysis**

 Our analysis shows that the ability to detect the road depends on an order parameter K.

K is a function of the probability distributions describing the problem. (France, Portugal,...).

- (I). If K <0, the task cannot be solved by any algorithm (needle in haystack).
  - (II). If K > 0, the task can be solved.

## Approximations.

- Perform Inference using an approximate model P\_g^a instead of P\_g. (sufficient statistics).
- This reduces the order parameter:

$$K^a = K - D(P_g||P_g^a).$$

 This reduces performance by a quantifiable amount -- D(P\_g||P\_g^a).



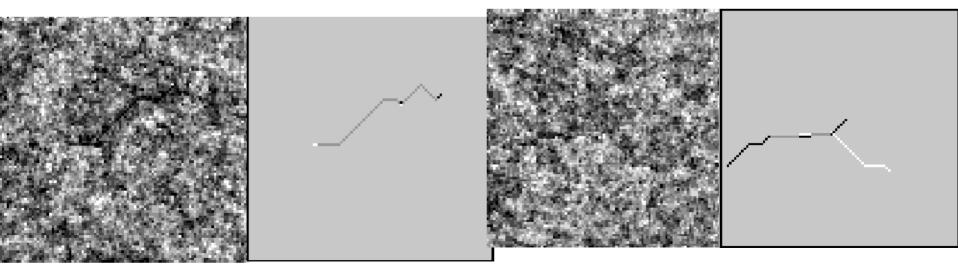
#### More General Models

- Generalize previous results to allow For: (I) Non-factorizable models, (II) Models defined on the image lattice, (III) Starting point is unknown.
- Our results are purely asymptotic
   in N. They use Large Deviation Theory.

## 4

#### General Examples.

- Performance is determined by order parameters K as before:
- Example: K = 1.00 and K = -0.43



## Approximate Models

- Similar Analysis for approximate models. (Sufficient statistics).
- Order parameters get reduced by terms such as D(P\_g||P\_g^a).
- Requires the approximation P\_g^a to use a subset of the statistics used by P\_g
   See Minimax Entropy (Zhu, Wu, Mumford)

#### Summary

- Performance Bounds required for evaluating vision algorithms.
- Theoretical bounds can be determined in some cases. Order parameters K for characterizing task difficulty.
- Alternatively, frequentist measures on datasets with ground truth.